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EXECUTIVE SUMMARY

PERFORMANCE OF CONCRETE PAVEMENT IN
THE PRESENCE OF DEICING SALTS AND

DEICING SALT COCKTAILS

Introduction

This report is a summary of work performed to assess the

performance of concrete paving materials in the presence of

deicing salts and deicing salt cocktails as a part of the Joint

Transportation Research Program (JTRP) through SPR-3864.

This report describes the two main outcomes of this work. First,

the report documents the development a standardized approach to

use low temperature differential scanning calorimetry (LTDSC) to

assess the influence of cementitious binder composition on the

potential for calcium oxychloride formation. Second, this work

will assess the influence of blended salt cocktails on the formation

of calcium oxychloride.

Findings

N Some concrete pavements have shown premature deteriora-

tion at the joints. It has been proposed that this can be attri-

buted to two primary factors: increased fluid saturation and

a chemical reaction that occurs between deicing salts and the

cement matrix.

N A test method was developed/formalized that uses a low

temperature differential scanning calorimeter (LTDSC) test

method to quantify the chemical reaction that occurs be-

tween the cementitious matrix and the deicing salt to form

calcium oxychloride.

N It is proposed that the LTDSC test be used to qualify the

potential for calcium oxychloride formation in a cementi-

tious matrix. Currently two primary approaches appear

poised to have the potential to mitigate calcium oxychloride

formation. These include the replacement of a portion of

cement with supplementary cementitious materials and the

use of concrete sealers such as soy methyl ester polystyrene

blends.

N This report has shown that as the calcium hydroxide (CH)

content in the paste increases, so does the potential for

calcium oxychloride (CAOXY) formation. CAOXY con-

tents increase with the proportion of CaCl2 solution in the

blends. A simple model has been developed to estimate the

amount of calcium oxychloride formed in the pastes,

depending on the calcium chloride and calcium hydroxide

contents.

Implementation

This report describes the development of a standardized

approach to use low temperature differential scanning calorimetry

(LTDSC) to assess the influence of cementitious binder composi-

tion on the potential for calcium oxychloride formation. This pro-

cedure is well founded and is written in ITM format and can be

considered for acceptance by INDOT as a test method and

forwarded to AASHTO for national consideration as well. The

work is documented, accurate and peer reviewed. Second, this

work assessed the influence of blended salt cocktails on the

formation of calcium oxychloride in various cementitious

systems. The work indicates that calcium oxychloride formation

can be reduced with the use of supplementary materials, the use

of topical treatments, and judicious selection of blend formula-

tions.
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1. OVERVIEW OF RESEARCH

Deicing salts are widely used for anti-icing and de-
icing operations. While historically sodium chloride
may have been the deicer of choice, a wide range of
deicing materials have begun to be used to operate at
lower temperatures, to adhere to the road better, and to
improve other aspects of performance such as environ-
mental impact or corrosion resistance. It has recently
been observed that intermediate phases can form when
the deicing salt reacts with the matrix of the concrete
resulting in a reduction in the durability of concrete
pavements. Blended deicing materials can result in
changes in melting capacity of ice and intermediate
phase compositions forming with the paving materials.
This project examined the potential reaction that can
occur with different binders and different salt cocktails.
Further this project developed the use of a new test
method based on low temperature differential scanning
calorimetry (LTDSC) to assess the freezing point for
liquid deicers and their potential to form deleterious
reactions that impact the durability from a fundamental
scientific perspective. This can guide INDOT operations
providing information on the potential interaction be-
tween the salt and the pavement composition. This may
enable pavement binders to be selected that are least
resistant to salt damage since they will be more compa-
tible with deicing salts.

1.1 Organization of This Report

This report is presented as a short summary of three
journal papers that were written as a part of this project.
This report presents only the most salient points of
the three papers, full details may be found in the
papers themselves, which are provided in the Appendices.
Additionally, the Appendices also contains a developed
Indiana Test Method for the low temperature dif-
ferential scanning calorimetry approach developed
here.

The three papers are listed below, and a summary is
provided in the following sections:

N Paper #1: Monical, J., Villani, C., Farnam, Y., Unal, E.,

& Weiss, W. J. (2016), ‘‘Quantifying Calcium Oxychloride

Formation for Different Cementitious Materials in the

Presence of CaCl2 Using Low Temperature Differential

Scanning Calorimetry.’’ Paper #1 has been accepted for

publication in Advances in Civil Engineering Materials.

N Paper #2: Monical, J., Unal, E., Barrett, T., Farnam, Y.,

& Weiss, W. J. (2016), ‘‘Reducing Joint Damage in

Concrete Pavements: Quantifying Calcium Oxychloride

Formation.’’ Paper #2 has been published in Trans-

portation Research Record: Journal of the Transportation

Research Board.

N Paper #3: Suraneni, P., Monical, J., Unal, E., Farnam, Y.,

& Weiss, W. J. (2016), ‘‘Calcium Oxychloride Formation

Potential in Cementitious Pastes Exposed to Blends of

Deicing Salt.’’ Paper #3 has been submitted for publication

to ACI Materials Journal.

2. DEVELOPMENT OF THE LTDSC TEST
METHOD (PAPER #1)

Paper #1 works to quantify the calcium oxychloride
that forms when a calcium chloride solution is placed in
contact with a ground cement paste using a low tem-
perature differential scanning calorimeter. The paper
describes a test method that can be used to quantify the
amount of calcium oxychloride that forms from the
reaction between a cementitious paste (more specifically
the CH in the paste) and calcium chloride (CaCl2) from
the solution. The testing protocol consists of three
phases: (1) preparing a powder sample obtained by
grinding hydrated cement paste, (2) mixing the
hydrated cement paste powder with 20% CaCl2 salt-
water solution (by mass), and (3) exposing the paste-
salt water solution mixture to a temperature cycle
(-90 uC to 50 uC, by heating at a rate of 0.25 C/min).
Using a low temperature differential scanning calori-
meter (LTDSC) the heat release signature during
heating (between approximately 35 uC and 45 uC for
this concentration of CaCl2) can be measured and
then used to quantify the energy associated with
calcium oxychloride phase transition. This protocol
was developed after a series of tests performed in the
laboratory where several parameters were varied.
Details on how the test procedure was developed and
the reason of specific choices were made in terms
of rates, temperatures and analysis procedures are
described in the following sections. Experiments
performed using a wide range of mixtures indicate
that the use of supplementary cementitious materials
(SCM) can reduce the volume of calcium oxychloride
produced. As such, mixtures containing SCM would
be less likely to demonstrate joint damage. Further, it
would be expected that this test can be used to
determine the level of SCM that is needed to reduce
the calcium oxychloride formation to an acceptable
level.

3. QUANTIFYING CALCIUM OXYCHLORIDE
FORMATION FOR CONCRETE MADE USING
PORTLAND CEMENT, PORTLAND LIMESTONE
CEMENT, SUPPLEMENTARY CEMENTITIOUS
MATERIALS, AND SEALERS (PAPER #2)

Paper #2 focuses on examining the role of mixture
composition on the formation of calcium oxychloride.

Twenty-five cementitious pastes were tested in this
study. Plain pastes were made with several type I portland
cements and portland limestone cements. Blended cement
pastes were made using the plain cements and supple-
mentary cementitious materials (SCMs) including fly ash,
slag and silica fume, portland limestone cements, and
limestone powder fillers. Fly ash and slag dosages of 20,
40, and 60% were used and silica fume dosages of 1, 2, 3,
6, and 9% were used. Paste samples were mixed with a
water-to-cementitious material ratio (w/cm) of 0.36 and
0.42 by mass following ASTM C305-14.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/25 1



Once mixed, paste samples were cast, cured, and
ground using a milling machine to produce a powder
passing through a 75-mm sieve. After the powder was
ground, it was stored in a sealed container to minimize
the potential for carbonation. The calcium chloride
solution (20% CaCl2 by mass) was prepared by mixing
granular reagent grade calcium chloride dihydrate and
deionized water. The samples were then immediately
placed in the LTDSC to minimize potential additional
hydration reactions and the procedure developed in
Paper #1 was used.

As the sample is heated, the formed calcium oxy-
chloride (CAOXY) melts, and the amount of CAOXY
that is formed can be determined by normalizing the
heat release during the phase change with that of pure
CAOXY (186 J/g).

Figure 3.1 shows the amount of CAOXY that is for-
med in different cement pastes exposed to the 20%

CaCl2 solution with and without SCMs. It is evident
that the tested plain cement pastes all show similar
amounts of CAOXY. Samples with fly ash or slag
show significantly lower amounts of CAOXY.

The benefits of SCM can be seen in Figure 3.2, which
shows the amount of CAOXY that is formed in cement
pastes with increasing amounts of fly ash, slag, or silica
fume. CAOXY amounts are significantly reduced as the
fly ash or slag replacement increases. At a replacement
level of 40%, CAOXY values reduce by about 60%, and
at a replacement level of 60%, CAOXY values are
almost zero.

In addition to examining the role of binder com-
position, six different topical treatments were tested to

Figure 3.1 CAOXY amounts formed in cement pastes exposed to 20% CaCl2 solution.

2 Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/25



understand whether they can reduce CAOXY forma-
tion. The topical treatments showed little benefit when
testing ground powders as grinding the sample exposes
the calcium hydroxide that would have been protec-
ted by the physical barrier of the topical treatment to
the salt. Therefore, to overcome this limitation, topical
treatment using a topical soy methyl ester polystyrene

blend was applied to small cement paste cores (cylinders
5¡1 mm in diameter and 2.5¡0.5 mm in height).
Results are shown in Figure 3.3, and they indicate a
substantial reduction in CAOXY amount. It has been
shown elsewhere that sealers soy methyl ester polystyr-
ene blends, alkyalkoxysilane sealer and a water-based
alkyalkoxysilane penetrating sealer (WBS) can prevent

Figure 3.2 Amount of CAOXY formed with various amounts of different SCMs. The dashed lines in the figure indicate the
expected reduction in CAOXY due to dilution of the cement by the SCMs.

Figure 3.3 CAOXY amounts with and without topical treatment.

Joint Transportation Research Program Technical Report FHWA/IN/JTRP-2016/25 3



the ingress of salts solutions into concrete and there-
fore can be effective at reducing oxychloride formation
and damage. Further studies on the action of topical
treatments are needed to confirm these preliminary
findings.

4. PERFORMANCE OF SALT COCKTAILS
(PAPER #3)

Chloride-based deicing salt solutions can react chem-
ically with the calcium hydroxide in the cementitious
matrix, leading to the formation of an expansive salt
known as calcium oxychloride. This study examined the
formation of calcium oxychloride in the presence of
blends of different chloride-based deicing salts (sodium
chloride and calcium chloride).

In this study twenty-eight cement pastes with w/cm
0.36 were tested using cements, fly ashes, slag, one silica
fume that are typical of use in INDOT projects. Fly ash
and slag were used at 20% replacement, whereas silica
fume was used at 3 and 6% replacement. Pastes were
mixed as earlier, and cured 4 months at a temperature
of 23 uC. Two solutions were prepared consisting of
only one salt with 20% CaCl2 and 20% NaCl by mass,
respectively. Using the two pure solutions several salt
blends were prepared. TGA and LTDSC were used to
determine CH and CAOXY contents, in a manner
similar to the other papers.

Figure 4.1 shows the relationship between CAOXY
and CH contents for different salt blends tested. There
are two clusters of CH values, one around 10 g/100 g
paste and the other from around 15 g/100 g paste; the
first cluster corresponds to pastes with fly ash or slag;
the second cluster corresponds to plain pastes or pastes
with silica fume. The reaction to form CAOXY is the
given in Eq. 4.1:

CaCl2z3Ca OHð Þ2z12H2O

?3Ca OHð Þ2:CaCl2:12H2O ð4:1Þ

If all the CH reacts as in Eq. 4.1, then 549.44 grams
of CAOXY are formed for 222.28 grams of CH
reacting, this is shown as a bold line in Figure 4.1.
The theoretical value from chemistry provides an upper
bound of the amount of CAOXY that can form. For a
given mixture, the CAOXY values are similar for the
salt blends containing larger proportions of CaCl2. In
these cases, CAOXY values are well-correlated with
CH values and approach the theoretical limit based on
chemistry. The addition of SCMs such as fly ash and
slag therefore reduces the CAOXY values due to a
reduction in CH values. It should be noted that the CH
– CAOXY best-fit lines do not pass through zero, but
intersect the X-Axis at 3 (g CH/100 g paste), indicating
that some amount of CH is not reacting to form
CAOXY. For blends with lower proportions of CaCl2,
there is poor correlation between CAOXY and CH
contents, and less CAOXY forms. Very little CAOXY
is measured with pure NaCl salt solutions.

Figure 4.2 shows a plot of the CAOXY formed in the
different pastes as a function of the proportion of CaCl2
solution to NaCl solution in the salt blends. Data
points have been grouped into different groups based
on their CH contents. CAOXY contents increase with
the proportion of CaCl2 solution in the blends. At
lower proportions of CaCl2 solution in the blends, the
reaction is controlled by the amount of CaCl2. At
higher proportions of CaCl2 solution in the blends, the
reaction is controlled by CH. The concentration at
which this switch occurs depends on the amount of CH
in the paste. Therefore, all mixtures show the same
CAOXY contents at low proportions of CaCl2 in the
salt blends, at higher proportions of CaCl2 in the salt
blends, mixtures with higher CH show higher CAOXY
contents.

Figure 4.1 Relation between CAOXY and CH contents for
several salt blends (where aCbN denotes a salt blend having
proportions a % CaCl2 and b % NaCl).

Figure 4.2 Relation between CAOXY and proportion of
CaCl2 in salt blends.
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A general model to estimate CAOXY contents can be
developed. Consider a case where 100 g of ground cement
paste is mixed with 100 g of CaCl2 and NaCl blends
(overall strength 20%). Three assumptions are made:

1. NaCl has a negligible contribution to the CAOXY
formation.

2. Not all the CH reacts to form CAOXY; 1.8 g/100 g CH is
encapsulated.

3. Some of the CaCl2 is bound by cement hydrates;
2 g/100 g CaCl2 is bound.

As presented in Eq. 4.1, whenever there is excess CH,
the reaction is controlled by CaCl2, and vice versa. This
leads to the following conditions:

If CHv2 or CaCl2v1:8, then CAOXY~0 ð4:2Þ

If, 2|CaCl2{1:6vCH, then

CAOXY~
549:44

110:98
| CaCl2{1:8ð Þ ð4:3Þ

If, 2|CaCl2{1:6wCH, then

CAOXY~
549:44

222:28
| CH{2ð Þ ð4:4Þ

Applying the model to the entire data set results in
Figure 4.3; as can be seen from the figure, the agreement
between predicted and actual CAOXY values is excellent.

The model can be used to predict CAOXY values for
various CH and CaCl2 values. Results are shown in
Figure 4.4, with experimental points being shown as
symbols and modeled data being shown as straight
lines. At low proportions of CaCl2, the CAOXY value
depends on CaCl2, and at high proportions of CaCl2,
the CAOXY value depends on CH. In other words, the
slope of the initial part (a linear increase) is determined
by CaCl2 and the plateau value is determined by the

CH. The model allows for the development of this
entire plot for different CaCl2 and CH contents,
thereby significantly reducing experimental effort.

5. CONCLUSIONS

5.1 Project Overview

The Indiana Department of Transportation commis-
sioned a study to better understand how the composi-
tion of different salts can interact with the binder of
concrete paving mixtures to form damage. The out-
comes of this project were threefold.

N First, the project developed a test procedure that can be
used to quantify the potential extent of the calcium
oxychloride reaction that can occur. This test procedure
(a first of its kind) can be used to quantify the amount of
calcium oxychloride that can be formed for a given binder
system. It is anticipated that this test can be used to improve
concrete mixture design to reduce the potential for joint
deterioration.

N Second, research was performed to quantify the calcium
oxychloride formation for concrete made using portland
cement, portland limestone cement, supplementary cemen-
titious materials, and sealers. The results provide an
indication that sealers and supplementary materials can
both be used to reduce damage caused by the reaction
between the cementitious matrix and the deicing salt.

N Third, a study was conducted which is believed to be
the first examination that the authors are aware of to
document the impact of salt blends or salt cocktails. The
results clearly show that some compositions are more
aggressive than other compositions.

5.2 Summary of the Test Method to Quantify Calcium
Oxychloride

N A low temperature differential scanning calorimetry
approach was developed to quantify the amount of

Figure 4.3 Predicted and expected CAOXY values.

Figure 4.4 Application of the model to estimate CAOXY
values for various CH and CaCl2 values. Experimental data is
shown as points and modeled data as straight lines.
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calcium oxychloride that forms when cementitious pastes

are exposed to calcium chloride and blends of calcium
chloride and sodium chloride. This approach consists of

placing a ground hydrated cement paste in contact with a
salt solution and monitoring heat flow for a sample as

the temperature is raised. This test can be extended to
mixtures containing a a wide variety of deicing materials.

N The testing protocol consists of preparing a cement paste,
grinding the paste to obtain a hydrated powder, testing

a cement paste–20% CaCl2–water mixture in the low
temperature differential scanning calorimeter (LTDSC)

where the sample is cooled to -90 uC, then heated at a
rate of 0.25 uC/hr to a temperature of 50 uC. The heat

release signature during heating (between approximately
35 uC and 45 uC) can be used to quantify the heat

associated with calcium oxychloride transformation.

N It is recommended that the test method use paste samples

that are hydrated to a great extent (to enable both the
reaction and pozzolanic reaction to occur. A standard

time of at least 91 days of curing at 23 uC is provided. To
help develop a more timely test it is proposed that the test

be accelerated to obtain a 91 day equivalent age (on a
sealed specimen) as determined using 3 days of curing at

23 uC followed by 25 days at 50 uC.

5.3 Summary of Mixture Composition Effects

N Some concrete pavements have shown premature dete-
rioration at the joints. This deterioration has been

attributed to a variety of factors including a reaction
between the deicing salt and the cementitious matrix. The
reactions can vary depending on the chemistry of the

matrix and the chemistry of the deicing salt. Calcium
chloride (CaCl2) can react with either tricalcium alumi-

nate (C3A) to form Kuzel’s salt or Friedel’s salt or
calcium hydroxide (Ca(OH)2) to form calcium oxychlor-

ide (3Ca(OH)2?CaCl2?12H20).

N The straight cement systems (OPC) showed the highest
amount of calcium oxychloride formation. The amount

of calcium hydroxide can vary slightly depending on the
composition of the cement, the authors believe that
specifying restrictive limits of C3S or C2S in a Type I

cement will not resolve this problem.

N The samples made using portland limestone cement
(PLC) theoretically show a reduction in calcium hydro-

xide due to dilution. However many of these mixtures
showed an accelerated hydration associated with the

finer grind of the PLC resulted in a comparable amount
of calcium hydroxide and calcium oxychloride formation

to the original OPC.

N Experiments performed using a wide range of mixtures
indicate that the use of supplementary cementitious
materials (SCM) can substantially reduce the calcium
oxychloride that forms. As such, mixtures containing
SCM would be less likely to demonstrate joint damage.

N As the calcium hydroxide (CH) content in the paste
increases, so does the potential for calcium oxychloride
(CAOXY) formation. Fly ash, slag and silica fume have
all been shown to reduce the potential for calcium
oxychloride formation.

N The use of increased SCM needs to be balanced with
concerns over scaling, reduction of the pH buffer leading
to increased corrosion potential, and slower early strength
development.

5.4 Summary of Salt Blend Performance

N The potential of calcium oxychloride formation was
determined for NaCl and CaCl2 solutions in contact with
paste. Calcium chloride solutions result in a greater
potential for calcium oxychloride formation.

N CAOXY contents increase with the proportion of CaCl2
solution in the salt blends. At lower proportions of CaCl2
solution in the salt blends, the reaction is controlled by
the amount of CaCl2. At higher proportions of CaCl2
solution in the salt blends, the reaction is controlled by
CH. The concentration at which this switch occurs
depends on the amount of CH in the paste.

N A general model to estimate the amount of calcium
oxychloride that forms given the salt blend composition
and the amount of calcium hydroxide in the cement paste
has been developed.

5.5 Summary of Mitigation Strategies

Three mitigation strategies may be used to mitigate
calcium oxychloride formation.

N First, the use of supplementary cementitious materials
such as fly ash, slag, and silica fume leads to a reduction
in calcium oxychloride contents due to a reduction in the
calcium hydroxide contents.

N Second, the use of topical sealers, such as those based on
topical soy methyl ester polystyrene blend can create a
physical barrier between calcium hydroxide and salt
solution.

N Finally, the use of salt blends comprising a lower amount
of calcium chloride, as sodium chloride does not signifi-
cantly contribute to calcium oxychloride formation.
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International, West Conshohocken, PA.
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From Monical, J., E. Unal, T. Barrett, Y. Farnam, and
W. J. Weiss. Reducing Joint Damage in Concrete Pave-
ments: Quantifying Calcium Oxychloride Formation.
Transportation Research Record: Journal of the Trans-
portation Research Board, No. 2540. Copyright, National
Academy of Sciences, Washington, D.C., 2016. Ab-
stract posted with permission of TRB. For complete
paper, please link to http://pubsindex.trb.org/view/
2016/C/1393740.

APPENDIX C: PAPER #3

Suraneni, P., Monical, J., Unal, E., Farnam, Y., &
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Paper #3 has been submitted for publication to ACI
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About the Joint Transportation Research Program (JTRP)
On March 11, 1937, the Indiana Legislature passed an act which authorized the Indiana State 
Highway Commission to cooperate with and assist Purdue University in developing the best 
methods of improving and maintaining the highways of the state and the respective counties 
thereof. That collaborative effort was called the Joint Highway Research Project (JHRP). In 1997 
the collaborative venture was renamed as the Joint Transportation Research Program (JTRP) 
to reflect the state and national efforts to integrate the management and operation of various 
transportation modes. 

The first studies of JHRP were concerned with Test Road No. 1 — evaluation of the weathering 
characteristics of stabilized materials. After World War II, the JHRP program grew substantially 
and was regularly producing technical reports. Over 1,500 technical reports are now available, 
published as part of the JHRP and subsequently JTRP collaborative venture between Purdue 
University and what is now the Indiana Department of Transportation.

Free online access to all reports is provided through a unique collaboration between JTRP and 
Purdue Libraries. These are available at: http://docs.lib.purdue.edu/jtrp

Further information about JTRP and its current research program is available at:
http://www.purdue.edu/jtrp

About This Report  
An open access version of this publication is available online. This can be most easily located 
using the Digital Object Identifier (doi) listed below. Pre-2011 publications that include color 
illustrations are available online in color but are printed only in grayscale. 

The recommended citation for this publication is: 
Suraneni, P., Monical, J., Unal, E., Farnam, Y., Villani, C., Barrett, T. J., & Weiss, W. J., (2016). Per-
formance of concrete pavement in the presence of deicing salts and deicing salt cocktails (Joint 
Transportation Research Program Publication No. FHWA/IN/JTRP-2016/25). West Lafayette, 
IN: Purdue University. http://dx.doi.org​/10.5703/1288284316350
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